Neural Prophet

A simple time series forecasting framework

Oskar Triebe Stanford University Oct 12th, 2021

A time series is

a sequence of data pointsthat occur in successive orderover some period of time.

Prophet

When to use NeuralProphet

Task:	Forecasting. Predict future of observed variable.
Data:	100 to millions of samples. Unidistant, real-valued.
Dynamics:	Must: Future values depend on past values. Ideal: Seasonal, trended, repeating events, correlated variables.
Applications:	Human behavior, energy, traffic, sales, environment, server load,

Motivation The Neural & Prophet Model Components Model Use Example Outlook

Motivation

Time series forecasting is messy. We need hybrid models to bridge the gap.

Motivation

Chasm Time series - applied ML

Bridge NeuralProphet

Need expertise in both domains

Abstracts time series and ML knowledge

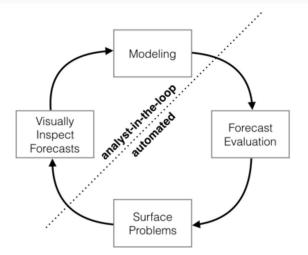
Prophet

Facebook Prophet is the most used forecasting package since 2017.

Quick from data to predictions.

Gentle learning curve.

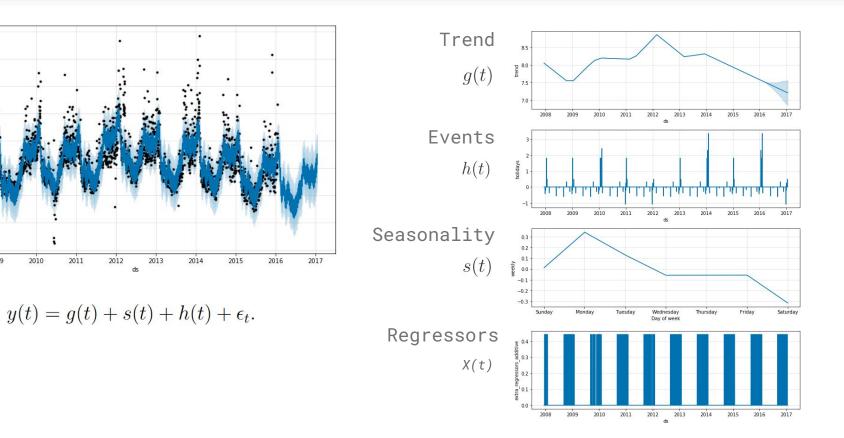
Customizable.



Taylor, S. J., & Letham, B. (2017). Forecasting at scale, PeerJ. <u>https://peerj.com/preprints/3190/</u>

Prophet is an interpretable and decomposable model.

> 9



Prophet

PR O PHET

Prophet has three major shortcomings:

- 1. Missing local context for predictions
- 2. Acceptable forecast accuracy
- 3. Framework is difficult to extend (Stan)

Neural Prophet

NeuralProphet solves these:

- 1. Support for auto-regression and covariates.
- 2. Hybrid model (linear <> Neural Network)
- 3. Python package based on PyTorch using standard deep learning methods.

Model

Current Model Components

- **S** Seasonality
 - Trend
- E/H Events / Holidays
- X Regressors
- AR Autoregression
- **Cov** Covariates

Sparsity / Regularization Nonlinear (deep) layers Global Modelling Uncertainty

NN

?

Piecewise linear trend

- N changepoints
- Segment-wise independent
- Automatic changepoint detection
- Optional logistic growth

$$\begin{split} g(t) &= (k + \mathbf{a}(t)^{\mathsf{T}} \boldsymbol{\delta}) t + (m + \mathbf{a}(t)^{\mathsf{T}} \boldsymbol{\gamma}), \\ & \uparrow \\ a_j(t) &= \begin{cases} 1, & \text{if } t \geq s_j \\ 0, & \text{otherwise} \end{cases} \end{split}$$

Seasonality

- N Fourier terms
- Automatic yearly, weekly, daily
- Optional multiplicative mode

$$s(t) = \sum_{n=1}^{N} \left(a_n \cos\left(\frac{2\pi nt}{P}\right) + b_n \sin\left(\frac{2\pi nt}{P}\right) \right)$$
$$s(t) = X(t)\boldsymbol{\beta}.$$
$$X(t) = \left[\cos\left(\frac{2\pi(1)t}{365.25}\right), \dots, \sin\left(\frac{2\pi(10)t}{365.25}\right) \right]$$

Events / Holidays

- Automatic for given country
- Various user-defined formats
- Optional multiplicative mode

$$Z(t) = \sum_{i=1}^{m} c_i e_i(t)$$

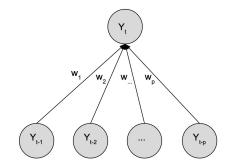
(Future-Known) Regressors

- Single weight
- Real-valued regressor
- Optional multiplicative mode

$$R(t) = \sum_{i=1}^{l} d_i v_i(t)$$

Auto-Regression

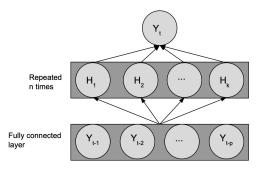
- By default AR-Net(0)
- Depth customizable AR-Net(n)
- Optional auto-AR via sparsification



AR-Net(0)
Interpretable

(Lagged) Covariates

- By default AR-Net(0) with y as target)
- Depth customizable AR-Net(n)
- Optional auto-lags via sparsification



AR-Net(n)
Non-linear modeling

A user-friendly Python package

m = NeuralProphet()

Gentle learning curve.

Get results first, learn, and improve.

NeuralProphet has smart defaults.

Advanced features are optional.

growth="linear", changepoints=None. n changepoints=10, changepoints range=0.9, trend reg=0, trend reg threshold=False, yearly seasonality="auto", weekly seasonality="auto", daily seasonality="auto", seasonality mode="additive", seasonality_reg=0, n_forecasts=1, n lags=0. num_hidden_layers=0, d hidden=None, ar sparsity=None, learning rate=None, epochs=None, batch size=None, loss func="Huber", optimizer="AdamW", train speed=None, normalize="auto", impute missing=True.

Missing Data is is automatically filled in:

- 1. bi-directional linear interpolation
- 2. centred rolling average

Data is automatically normalized:

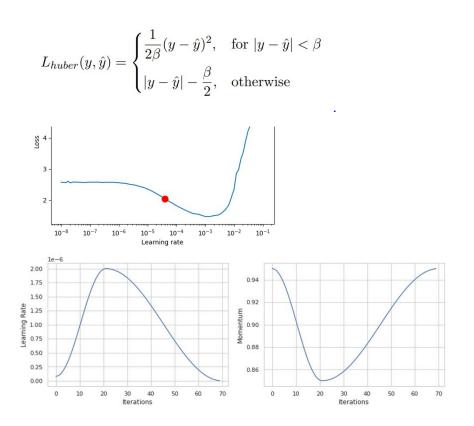
Name	Normalization Procedure
'auto'	'minmax' if binary, else 'soft'
'off'	bypasses data normalization
'minmax'	scales the minimum value to 0.0 and the maximum value to 1.0
'standardize'	zero-centers and divides by the standard deviation
'soft'	scales the minimum value to 0.0 and the 95th quantile to 1.0
'soft1'	scales the minimum value to 0.1 and the 90th quantile to 0.9

Loss Function is Huber loss, unless user-defined.

The learning rate is approximated with a learning-rate range test.

Batch size and epochs are approximated from the dataset size.

We use one-cycle policy with AdamW as optimizer for simplicity.



Visualize:

- Plot past and future predictions
- Decompose forecast components
- Interpret model parameters
- Plot most recent prediction
- Inspect a particular forecast horizon

Other:

- Simple Split, cross validation, double cross validation
- Control logger verbosity
- Make fit reproducible
- ...

Examples

Yosemite Temperature prediction with Trend, Seasonality and Auto-Regression:

- 1 step ahead
- 36 steps ahead (with extras: AR Sparsity, 24 hours ahead)

import pandas as pd

from neuralprophet import NeuralProphet, set_log_level
set_log_Level("ERROR")
df = pd.read_csv(data_location + "example_data/yosemite_temps.csv")

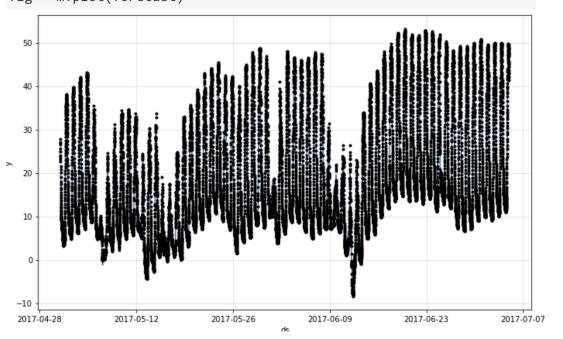
```
m = NeuralProphet(
    n_lags=12,
    changepoints_range=0.95,
    n_changepoints=30,
    weekly_seasonality=False,
    batch_size=64,
    epochs=10,
    learning_rate=1.0,
```

metrics = m.fit(df, freq='5min')

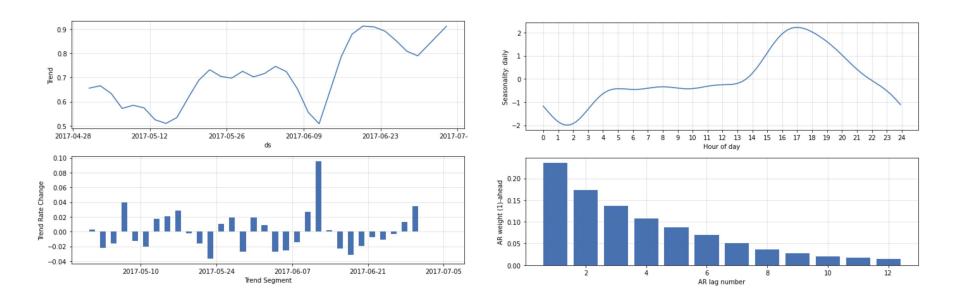
Dataset:

Observed temperature in Yosemite Valley, measured every 5 min over two months.

future = m.make_future_dataframe(df, n_historic_predictions=True)
forecast = m.predict(future)
fig = m.plot(forecast)

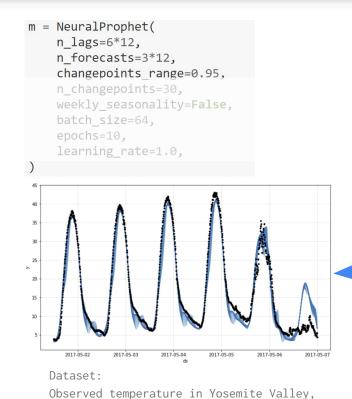


m.plot_parameters()



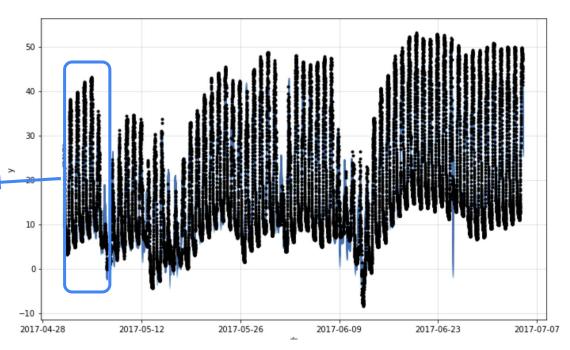
Yosemite Temperature - Predict next 36 observations.

Example: Yos36



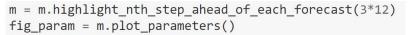
measured every 5 min over two months.

metrics = m.fit(df, freq='5min')
future = m.make_future_dataframe(df, n_historic_predictions=True)
forecast = m.predict(future)
fig = m.plot(forecast)



Analyze a specific forecast horizon. Sparsify.

Example: Yos36



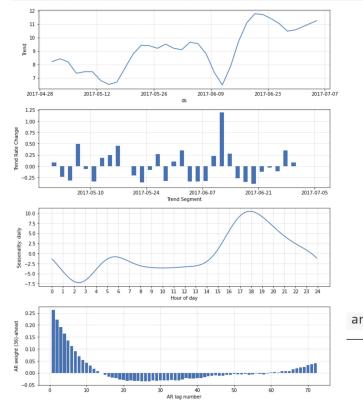
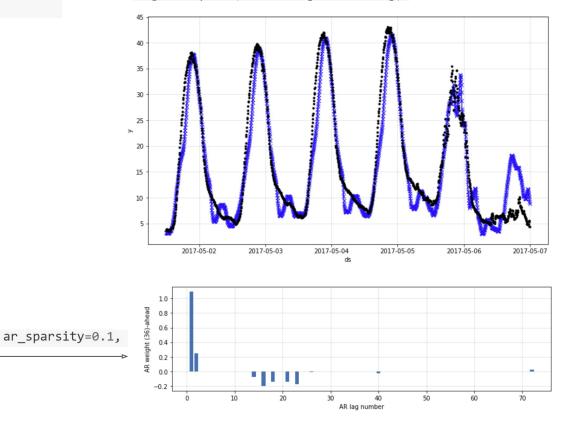
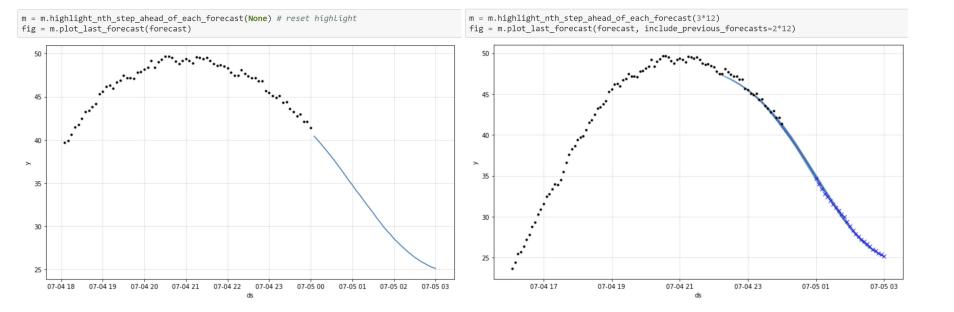
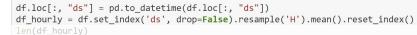


fig = m.plot(forecast[144:6*288])





Want to forecast a larger horizon?



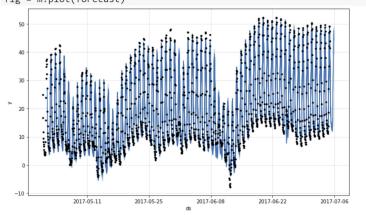
1561

m = NeuralProphet(
 n_lags=24,
 n_forecasts=24,
 changepoints range=0.9

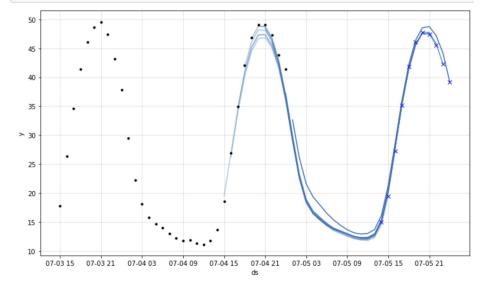
```
n_changepoints=30,
weekly_seasonality=False,
learning_rate=0.3,
```

metrics = m.fit(df_hourly, freq='H')

future = m.make_future_dataframe(df_hourly, n_historic_predictions=True)
forecast = m.predict(future)
fig = m.plot(forecast)



m = m.highlight_nth_step_ahead_of_each_forecast(24)
fig = m.plot_last_forecast(forecast, include_previous_forecasts=10)



Outlook

Outlook

We are extending the framework to suit more forecasting needs.

Pull Request pending:

- Global modelling
- Quantile estimation (Uncertainty Interval)
- Classification
- Better documentation

Extensions [upcoming]

- Anomaly Prediction & Semi-Supervised Learning
- Hierarchical Forecasting & Global Modelling
- Attention: Automatic Multimodality & Dynamic Feature Importance
- Quantifiable and Explainable Uncertainty

Improvements [upcoming]

- Infuse Deep Learning
- Faster Training Time & GPU support
- Improved UI
- Diagnostic Tools for Deep Dives

Anything trainable by gradient descent can be added as module

Task	Prophet	NeuralProphet
Very small dataset	1	
Very large dataset		1
Long range forecast (e.g. multiple years)	1	1
Short to medium range forecast (e.g. 1 to 1000 step ahead)		1
Specific forecast horizon (e.g. next 24h)		1
Auto-correlation (dependence on previous observations)		1
Lagged regressors (observed covariates)		1
Non-linear dynamics		1
Global modelling of panel dataset		1
Fast prediction time (computationally)		1

THANK YOU, dear collaborator, supporter and advisor!

Oskar Triebe

Hansika Hewamalage

Polina Pilyugina

facebook

Lluvia Ochoa

Nikolay Laptev

Mateus De Castro Ribeiro

Gonzague Henri

Ram Rajagopal

Christoph Bergmeir

Alessandro Panella

Evgeny Burnaev

Caner Komurlu

Italo Lima

Abishek Sriramulu

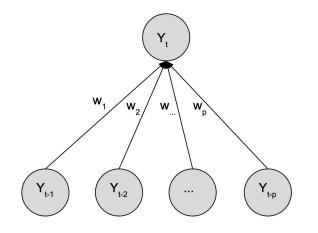
Bernhard Hausleitner

Thank You

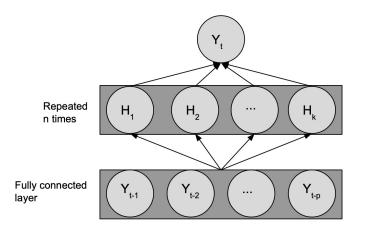
Appendix: AR-Net

Model: AR-Net

AR-Net is a Neural Network for autoregressive time series.

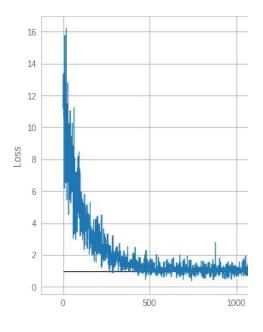


AR-Net(n)
Stronger modeling ability



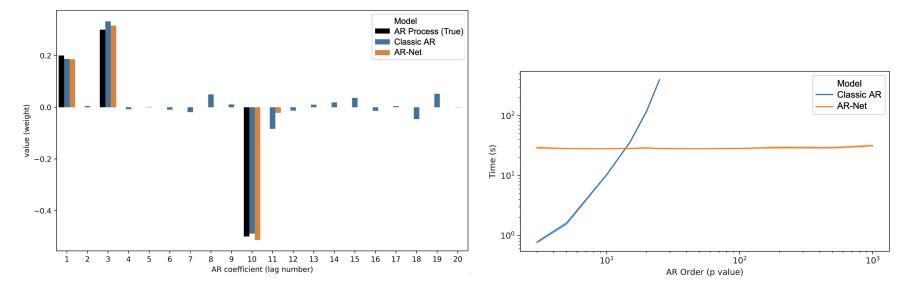
$$y_t = c + \sum_{i=1}^{i=p} w_i * y_{t-i} + e_t$$

 $min_{\theta} \quad L(y, \hat{y}, \theta) + \lambda(s) \cdot R(\theta)$ $\lambda(s) = c_{\lambda} \cdot (s^{-1} - 1)$ $s = \frac{\hat{p}_{data}}{p_{model}}$ $c_{\lambda} \approx \frac{\sqrt{\hat{L}}}{100}$ $R(\theta) = \frac{1}{p} \sum_{i=1}^{p} \frac{2}{1 + \exp(-c_{1} \cdot |\theta_{i}|^{\frac{1}{c_{2}}})} - 1$



Trained with SGD (Adam)

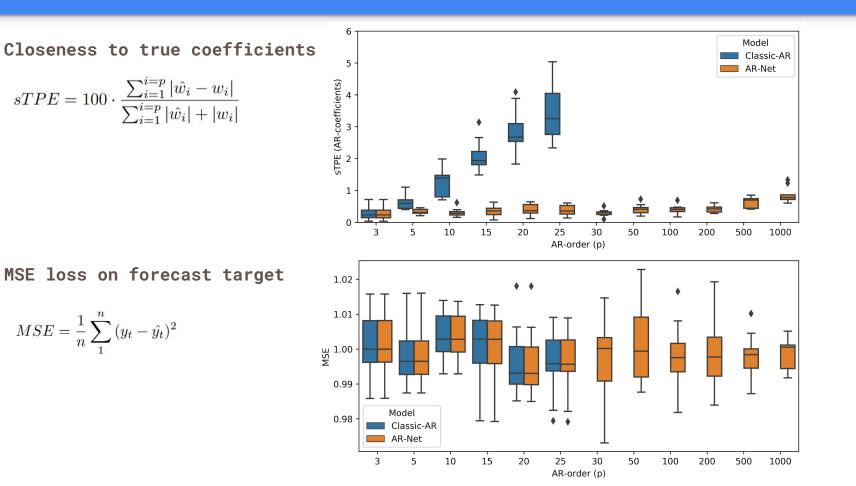
Automatic AR-lag selection, yet faster.



Automatic Sparsity

Quadratically faster

Sparse AR-Net surpasses Classic AR and scales to large orders.



Model: AR-Net

Appendix: Model Use Details

import pandas as pd

Hands-on

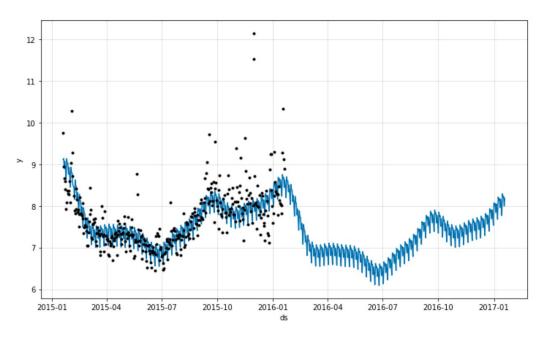
skip data preparation: -

Just create a DataFrame with desired columns

from neuralprophet.neural_prophet import NeuralProphet

df = pd.read_csv('../data/example_wp_log_peyton_manning.csv')

linear time-dependent model
m = NeuralProphet()
metrics = m.fit(df)
future = m.make_future_dataframe(df, future_periods=365)
forecast = m.predict(future)
fig fcst = m.plot(forecast[-730:])



```
Hands-on
```

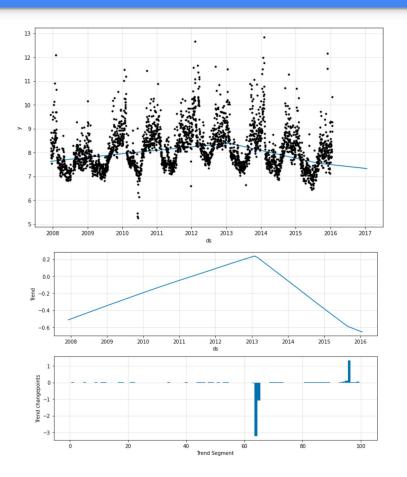
```
# or evaluate while training
m = NeuralProphet()
metrics = m.fit(df, validate_each_epoch=True, valid_p=0.2)
metrics.tail()
```

Disabling daily seasonality. Run NeuralProphet with daily seasonality=True to override this.

	SmoothL1Loss	MAE	RegLoss	SmoothL1Loss_val	MAE_val
35	0.163102	0.371323	0.0	0.485371	0.779465
36	0.161851	0.369609	0.0	0.368921	0.648736
37	0.161122	0.369219	0.0	0.366328	0.648230
38	0.168598	0.376638	0.0	0.348269	0.627886
39	0.167961	0.375777	0.0	0.362161	0.642699

split manually m = NeuralProphet() df_train, df_val = m.split_df(df, valid_p=0.2) train_metrics = m.fit(df_train) val_metrics = m.test(df_val) Trend

Hands-on



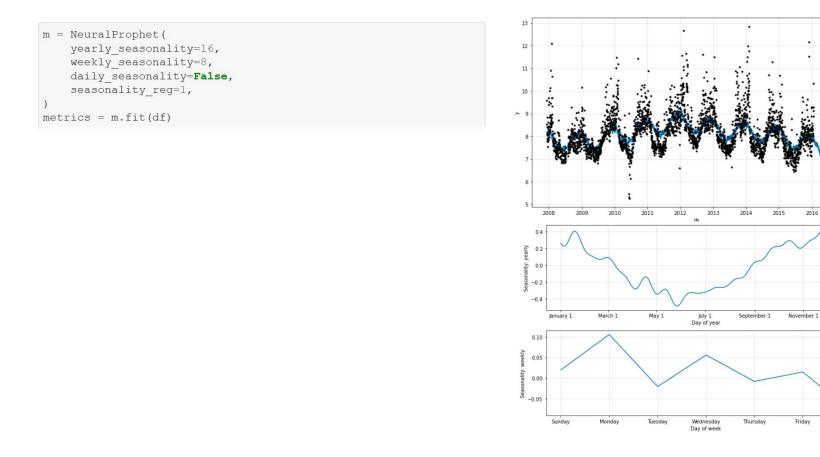
Seasonality

Hands-on

2017

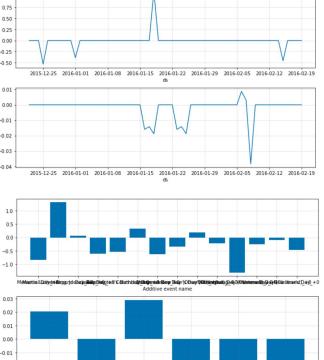
January 1

Saturday



Events can be added in different forms.

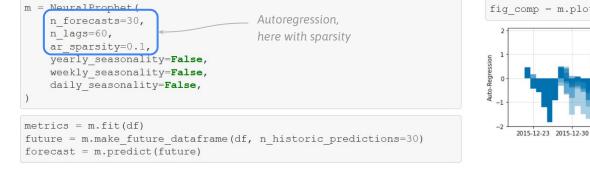
Hands-on

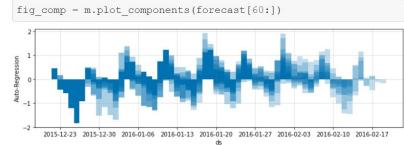


Multiplicative event name

Auto-Regression

Hands-on



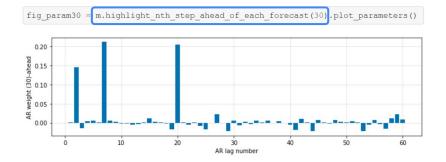


Recommended example notebook:

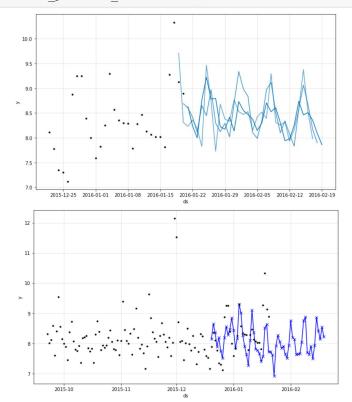
https://github.com/ourownstory/neural_prophet/blob/master/example_notebooks/autoregression_yosemite_temps.ipynb

Focus on a specific forecast.

fig_param = m.plot_parameters()



fig_prediction = m.plot_last_forecast(forecast[60:], include_previous_forecasts=2)



Hands-on

Lagged Covariates & Future Regressors

Hands-on

